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ABSTRACT

In this paper, we propose a probabilistic approach for tex-
ture description using adaptive wavelet packet coefficients.
The objective of this description is to extract features which
characterize each texture class and thus for segmentation
of multitextured images. Use standard dyadic wavelets is
insufficient to analyse high frequency signals with narrow
bandwidth and this type of decomposition is not transla-
tion invariant. So to remedy this insufficiency, we will
use wavelet packet which are a generalization of standard
wavelet and to describe texture accuracy we must adapt
decomposition to each texture. To this end, we propose a
probabilistic approach to select the best basis for a texture
from all possibly partitions using Maximum A Posteriori
estimate (MAP). We try to apply this method to classify
multispectral images obtained from SPOT sensor.

1. INTRODUCTION

In many image processing applications, texture attribut is
very important and wavelet packets have played an impor-
tant role to describe texture [1]. To adapt wavelet packet
for each texture, many methods are used to select the best
basis that describe accuracy this texture. There is sev-
eral choices of criterions in literature to definebest and
severaldistances to discriminate textures. Brady et al.
[2] developed a probabilistic framework for adaptive tex-
ture description. Starting with a probability distribution
on the space of infinite images, we compute a distribu-
tion on finite region by marginalization. For a gaussian
distribution, the computational requirement of diagonal-
ization leads naturally to adaptive wavelet packet models
which capture the principle periodicities present in the tex-
tures and allow long-range correlations while preserving
the independence of the wavelet packet coefficients. Sev-
eral works mentioned that Gaussian distribution is a use-
ful minimal assumption especially in the case of adaptive
basis and coherent textures [3, 4]. Although many of sub-
bands of the basis present a bimodal aspect and the re-
mainder appear Gaussian and generalized Gaussian. The
histograms of such subbands show the presence of max-
ima at non zero coefficient values thus proves existence

of periodicity in texture class. In absence of this type of
subbands, probably image of that texture are flat or untex-
tured.

Remotely sensed images are very textured, so we have
interest to adapt the approach given above and detailed in
the rest of this paper to describe and discriminate texture
class of multispectral images.

2. MAP ESTIMATE

The adaptive wavelet packet developed by Brady use Gaus-
sian distribution assumption to model subbands of the best
basis. Gaussian assumption is relaxed and extended to
three models: each subband of the basis can take Gaussian
form (G), Generalized Gaussian form (GG) or constrained
mixture of Gaussian form (MoG). So, we use the adaptive
probabilistic approach to consider several models for the
distributions of the wavelet coefficients in each subband.
Texture models are thus parameterized by the following
data:

1. a wavelet packet basis,T , obtained by the giving of
a mother wavelet,

2. a mapµ : T → M , M = {G, GG, MoG}, select-
ing the subband model,

3. a mapθ : T → P , P is the set of parameters for
each model.

In the rest of this section, we detail MAP estimate for each
above parameters, given a number of examples of a partic-
ular class of textures.

2.1. Bayesian methodology

We adopt MAP estimation to compute values of the above
parameters. Given a number of training images{φn : n ∈
N}, we compute the followinga posteriori probability:

Pr((θ, µ, T )|{φn}, A, β) ∝ Pr({φn}|(θ, µ, T ))∗

Pr(µ|T )Pr(θ|µ, T, A)Pr(T |β) . (1)

whereA andβ are experimental parameters and take
values respectively in[0, 20] and[50, 500] [5].



The first factor on the right-hand side represent the
likelihood function of the training data which can be write
like a product over the setT (we suppress the indexn for
legibility):

Pr(φ|(θ, µ, T )) =
∏

t∈T

Pr(ωt|θ(t), µ(t)), (2)

whereωt represent the set of wavelet packet coefficients
in the subbandt.

The second factor represent the probability of the model
parameters. For each subband, all the parameters are uni-
formly distributed over a large rangeA. Thus it can be
written as a product over the setT :

Pr(θ|µ, T, A) =
∏

t∈T

A−dim(µ(t))

=
∏

t∈T

e−dim(µ(t))ln(A), (3)

The third factor representa priori probability of model.
We consider that all models are equally likely, with prob-
ability 1/3, so we have:

Pr(µ|T ) =
∏

t∈T

1

3
= e−|T |ln(3), (4)

where|T | is the number of subbands which exist in the
basisT .

The finally factor allow to penalize the depth of de-
composition. It’s given by:

Pr(T |β) = Z−1(β)e−β|T |, (5)

whereβ is a complexity penalty andZ−1(β) is a normal-
ization factor.

2.2. MAP estimation of µ∗ and θ∗

These parameters depend only on the first two factors of
equation 1, so we maximize the combination of equations
2 and 3 to estimateµ∗ andθ∗. This quantity is given by:

Pr(ωt|θ(t), µt)e
−dim(µ(t))ln(A). (6)

2.2.1. Gaussian model

In this case, we have this form of probability distribution:

Pr(ωt|θ(t), µt = G) = (ft/π)
Nt
2 e−ft

∑

i∈t(ωt,i−νt)
2

(7)
The parameters of each subband are thusft, the inverse
variance, andνt, the mean. This two parameters are then
estimated by the following expression:

ν∗
t =

{
∑

i∈t
wt,i

Nt
scaling coefficients,

0 all other subbands,

f∗
t =

Nt

2
∑

i∈t(wt,i − ν∗
t )2

(8)

2.2.2. Generalized Gaussian model

Expression of this distribution model take the following
form:

Pr(wt|θ(t), µ(t) = GG) = Z−Nt(ft, st)e
−ft

∑

i∈t
|wt,i|

st

(9)

wherest is theshape factor andft control the width of
the distribution;Z is a normalization factor that depends
onft, st and the size of the subband. These parameters are
estimated using the algorithm described by Do and Vetterli
[3].

2.2.3. Constrained mixture of Gaussians model

To model the bimodal subbands, we use a constrained mix-
ture of three Gaussians. Thus, likelihood probability is
given by:

Pr(wt|θ(t), µ(t) = MoG) =

∏

i∈t

[

2
∑

a=0

Pt,a

(2πσ2
t,a)

1
2

e
−

(wt,i−νt,a)2

2σ2
t,a

]

(10)

wherea ∈ {0, 1, 2} is the index of mixture components.
The mixture probability,Pt,a, the meansνt,a and the vari-
anceσ2

t,a obey the following symmetry constraints:Pt,1 =
Pt,2, νt,1 = −νt,2, σt,1 = σt,2 andνt,0 = 0. Thus, the
type of model has four parameters to estimate.

The estimation problem of these model parameters can
be solved by the Expectation-Maximization (EM) algo-
rithm because of the mixture of Gaussians [6, 7]. Con-
strained mixture of Gaussians model permit to detect prin-
cipal periodicity which characterize such texture.

3. TEXTURED IMAGES SEGMENTATION

In the first section, we have developed a framework to de-
scribe texture class using adaptive wavelet packet coeffi-
cients. Therefore, for each texture classl, we assign a set
of parameters denotedSl which characterize it. In this pa-
per,Sl can be written as:

Sl = {T ∗, µ∗, θ∗}. (11)

where∗ means optimal for MAP estimates.
The process of classifying an image is carried out via

class map, λ : R → L whereR is the finite image re-
gion andL is the label set of several entities existing in
this image. So,λ assigns a label to each pixel in the fi-
nite image regionR. Our goal now is to find the best class
map,λ∗, that gives the best segmentation of the image. To
do this, we must choose an optimisation criterion which is
Maximum A Posteriori (MAP) estimate in our work. The
probabilistic statement of the problem is thus to findλ∗

that maximize theposterior probability,Pr(λ|φ, S). Us-
ing Bayes’ theorem, we can reduce the form of this prob-
ability to the following expression:

Pr(λ|φ, S) ∝ Pr(φ|λ, S)Pr(λ|B) (12)



where the first factor represent the likelihood function of
observed data and the second factor define the prior infor-
mation on the class mapλ.

To simplify the expression of likelihood function, we
assume that:

• pixel values inside a region are independent of pixel
values outside this region, this assumption is true
only if the regions are illuminated from the same
source and in segmentation process, independence
assumption is often considered because dependency
modeling is very difficult,

• the probability of the pixel values inside a region
with a fixed label does not depend on the class map
outside this region. This assumption sometimes ig-
nores information about the scene but we accept this
loss in the case of image segmentation.

The above assumptions simplifie the conditioning in
the likelihood function to give:

Pr(φ|λ, S) =
∏

l∈L

Pr(φRl
|λRl

, Sl) (13)

whereφRl
represent the finite image restricted to the re-

gion labeled byl, λRl
is the label map restricted toRl

which is, by definition, constant and equal tol.
We choose a trivial prior on the class map which as-

sumes independence between pixels in a region and as-
signs equal probability to each texture class. In addition
to this, each pixel in the image must belong to one and
only one texture class. Therefore, the prior probability on
a class map can be written as:

Pr(λ|S) =
∏

x∈φ

1

|L|
(14)

where x is a single pixel in the finite imageφ.
Compute likelihood function is relatively simple pro-

cedure in the case of dyadic shape which can be viewed as
three steps. We start by a training phase: we build the set
Bl that contain the several parameters which characterize
texture class such as the optimal wavelet packet decom-
position and the corresponding parameters sets. The sec-
ond step is apply the optimal decomposition to the dyadic-
shaped finite regionφRl

. Finally, we compute the likeli-
hood function for the the region for each model: Gaus-
sian, generalized Gaussian and mixture of three Gaussians
given in the first part of this paper.

4. RESULTS AND DISCUSSION

We trained the different models given above on some tex-
ture extracted from remote sensing images. Texture is
very important when analyzing remote sensing data, es-
pecially when high spatial resolution sensors are consid-
ered. Figure 1 shows patchs of a remotely sensed images
given by the first row which correspond respectively to
flat soil, urbain and mountain texture class, and their opti-
mal adaptive wavelet packet decomposition. These pieces

are multispectral images obtained from SPOT4 satellite of
20 meters resolution. SPOT4 permit to obtain four spec-
tral bands where each of them correspond to a wavelength
band.

(a) (b) (c)

(d) (e) (f)

Figure 1. Examples of remotely sensed texture class: (a)
flat soil, (b) water and (c) mountain, and their adaptive
wavelet packet decompositions below. Different colors
correspond to the different model automatically selected
within each subband: black, gray, and white represent the
GG model, the G model, and the MoG model respectively.

The resulting subband histograms and their fitted mod-
els are shown in figure 2. The first row, second row and
third row of figure 2 show subband histograms and fitted
model corresponding respectively to gaussian, generalized
gaussian and mixture of gaussian model.

For all unimodal subbands, the most probable value of
the wavelet packet coefficients is zero, i.e. the most prob-
able image composed of these subbands is untextured like
the water texture given in figure 1 (b). Clearly is unrealis-
tic for a texture model. In contrast, even though the multi-
modal subbands have zero mean, the most probable value
the coefficient is non-zero, and therefore textured. Since
the multimodal subbands typically have narrow frequency
support, we can think of them as capturing the principal
periodicities in the texture.

Now we aim to apply the segmentation approach given
in section 3 to multispectral remote sensing image. Figure
3 (a) represent a band from multispectral image obtained
by SPOT4 sensor of 20 meters resolution in April sixteen,
2000 which correspond to a region in Tunisia. This im-
age contains three texture class : water, mountain and flat
soil. Such texture is characterized by its signature obtained
by optimal wavelet packet decomposition detailed in the
precedent sections using all spectral bands which are four
in our image example given in figure 3 (a), its optimal de-
composition trees are given by figure 3 (a).

Figure 3 (b) shows the class map obtained by segment-
ing the multispectral remotely sensed image shown in fig-
ure 3 (a) using segmentation approach given in section 3.
The black color, grey color and white color correspond re-
spectively to mountain class, water class and flat soil class.

Psycovisually, we can said that the result of segmenta-



(a)

(b)

(c)

Figure 2. Examples of subband adaptive wavelet packet
coefficient pdfs and their corresponding fitted model : (a)
gaussian model, (b) generalized gaussian model, and (c)
constrained mixture of gaussians model, selected from the
optimal decomposition of mountain texture.

(a) (b)

Figure 3. (a) Remote sensed image and its (b) segmented
image.

tion is accurate but we try to evaluate it in the futur works
using effective quantitative methods.

5. CONCLUSION

In this paper we have extended the adaptive Bayesian ap-
proach of Brady et al. [2] by considering information ex-
isting in all bands of multispectral remote sensing image
to exploit correlation between several bands. Such type of
image is very textured mostly at high resolution where we
can have a problem to extract patch relative to each texture
class.

Practically speaking, while the classification maps ob-
tained for real remote sensing images are not as accurate
as for synthetic images because the classification system
could exploit multispectral information where the classes
are spectrally overlapped or otherwise poorly separable to
obtain a more accurate classification result.
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